Tigure 5 shows three commonly used mathematical functions: add, square and pred.

Figure 5

add(x,y) = x + y
square(x) =
$$x^2$$

pred(x) = x - 1

For example:

- add (3,2) evaluates to 5
- square (2) evaluates to 4
- pred(8) evaluates to 7

The domain of the functions square and pred in Figure 5 is the set of integers \mathbb{Z} and the domain of the add function is $\mathbb{Z} \times \mathbb{Z}$.

What is the co-domain of the pred function?

[1 mark]

What is the result of applying square operation to the argument 3?

[1 mark]

The add function takes two arguments.

Describe how the add function could be partially applied to the arguments 4 and 6.

[3 marks]

0 2 . 1	One approach to dealing with Big Data is to write code that can be distributed to run across more than one server.
	State two features of functional programming languages that make it easier to write code that can be distributed to run across more than one server.
	[2 marks]
	Feature 1
	Feature 2

PhysicsAndMathsTutor.com

12.1 Functional programming paradigm

0	3	Figure 11 shows a function, FunctionZ, written in a functiona
		programming language.

Figure 11

- [] is the empty list.
- (x:xs) as the argument to a function splits a list into two parts, the head x and tail xs.
- O 3.1 Complete **Table 5** by writing the value of the argument passed to each call of FunctionZ and the value returned by each call, when FunctionZ [4, 2, 5, 3] is evaluated.

[3 marks]

Table 5

Call number	Argument	Value returned	
1	[4, 2, 5, 3]		
2			
3			
4			
5			

0 3	. 2	All of the values in lists passed to FunctionZ as the argument are members of the
		set of integers.

Shade **one** lozenge to indicate the co-domain of the function.

[1 mark]

A The set of integers

B The set of irrational numbers ○

C The set of natural numbers

D The set of rational numbers

E The set of real numbers

A functional programming function ${\tt f}$ has the function type:	
$\mathtt{f} \colon \mathbb{N} \to \mathbb{R}$	
Describe the co-domain of the function £.	[1 mark]
	$f\colon \mathbb{N} o \mathbb{R}$